The Biotinidase Gene Variants Registry: A Paradigm Public Database
نویسندگان
چکیده
The BTD gene codes for production of biotinidase, the enzyme responsible for helping the body reuse and recycle the biotin found in foods. Biotinidase deficiency is an autosomal recessively inherited disorder resulting in the inability to recycle the vitamin biotin and affects approximately 1 in 60,000 newborns. If untreated, the depletion of intracellular biotin leads to impaired activities of the biotin-dependent carboxylases and can result in cutaneous and neurological abnormalities in individuals with the disorder. Mutations in the biotinidase gene (BTD) alter enzymatic function. To date, more than 165 mutations in BTD have been reported. Our group has developed a database that characterizes the known mutations and sequence variants in BTD (http://arup.utah.edu/database/BTD/BTD_welcome.php). All sequence variants have been verified for their positions within the BTD gene and designated according to standard nomenclature suggested by Human Genome Variation Society (HGVS). In addition, we describe the change in the protein, indicate whether the variant is a known or likely mutation vs. a benign polymorphism, and include the reference that first described the alteration. We also indicate whether the alteration is known to be clinically pathological based on an observation of a known symptomatic individual or predicted to be pathological based on enzymatic activity or putative disruption of the protein structure. We incorporated the published phenotype to help establish genotype-phenotype correlations and facilitate this process for those performing mutation analysis and/or interpreting results. Other features of this database include disease information, relevant links about biotinidase deficiency, reference sequences, ability to query by various criteria, and the process for submitting novel variations. This database is free to the public and will be updated quarterly. This database is a paradigm for formulating databases for other inherited metabolic disorders.
منابع مشابه
Computational approach towards identification of pathogenic missense mutations in AMELX gene and their possible association with amelogenesis imperfecta
Amelogenin gene (AMEL-X) encodes an enamel protein called amelogenin, which plays a vital role in tooth development. Any mutations in this gene or the associated pathway lead to developmental abnormalities of the tooth. The present study aims to analyze functional missense mutations in AMEL-X genes and derive an association with amelogenesis imperfecta. The information on miss...
متن کاملPrioritization of rs187728237 and rs80320514 as miRNA-related Variants of Human AEG-1 Gene
ABSTRACT Background and objectives: 3' untranslated region (3'UTR) single nucleotide polymorphisms (SNPs) represent genetic variations that may potentially affect binding of miRNA to coding genes, potentially leading to complex disorders. We aimed to perform in silico analysis of the potential phenotypic effect of 3'UTR S...
متن کاملBiotinidase deficiency: Genotype-biochemical phenotype association in Brazilian patients
INTRODUCTION The association between the BTD genotype and biochemical phenotype [profound biotinidase deficiency (BD), partial BD or heterozygous activity] is not always consistent. This study aimed to investigate the genotype-biochemical phenotype association in patients with low biotinidase activity. METHODS All exons, the 5'UTR and the promoter of the BTD gene were sequenced in 72 Brazilia...
متن کاملAnalysis of Missense Mutations of CX3CR1 Gene in Patients with Recurrent Pregnancy Loss Using Bioinformatics Tools
Introduction: Abortion is a common complication that refers to the early termination of pregnancy with the death of the fetus before the 20th week of pregnancy. Previous studies show that many genes are involved in this disease, including the CX3CR1 gene, which is one of the inflammatory response genes in the immune system. The pathogenicity of these variants was determined in this study using ...
متن کاملIn-silico study to identify the pathogenic single nucleotide polymorphisms in the coding region of CDKN2A gene
Background: CDKN2A, encoding two important tumor suppressor proteins p16 and p14, is a tumor suppressor gene. Mutations in this gene and subsequently the defect in p16 and p14 proteins lead to the downregulation of RB1/p53 and cancer malignancy. To identify the structural and functional effects of mutations, various powerful bioinformatics tools are available. The aim of this study is the ident...
متن کامل